
1Royce Williams BSidesLV, Ground1234! track – July 26, 2017

Password Cracking 201:
Beyond the Basics

Overview

About me
About you (Types of password crackers)

A brief 101 – password cracking and psychology
Cracking constraints

Core attacks and common pitfalls
Bootstrap tips

Questions

2

Disclaimers

My interpretation of some community consensus
(mostly from hashcat & John the Ripper)

I am not a lawyer and this is not legal advice

Your organization or jurisdiction may be different

Warning: may irritate and/or bore the experts

3

About me

$DAYJOB in InfoSec in the financial sector

ISP scars

Independent security researcher

Password auditor and enthusiast

Enjoys long keyboard walks on the beach

4

http://www.techsolvency.com/

About you
(types of password crackers)

● Infrequent audit/recovery (means to an end)
● Internal password auditors
● Password auditing consultants
● Pentesters
● Forensic investigators
● Researchers / academics
● Competition participants
● Enthusiasts
● Bounty crackers
● … and black-hat equivalents of some of these

These can (and do) overlap 5

 Learn from other disciplines

* Follow and interact with the people outside of your discipline.

* Read their work - but more importantly, study their goals.

* Most have a common interest in efficiency within time constraints
… but there are other common interests

* Some disciplines – pentesters, auditors - grok password selection
patterns across many organizations.

This is a competitive advantage - often not published, so pay
attention when it is

6

 7

Password activities:
a taxonomy (draft)

Work
directly for
entity that
owns the
hashes?

Clear hash
ownership

?

Authorized
by user?

Authorized
by hash
owner?

Recurring
against
same

targets
over time?

Restricted
time

period?

Exposed to
a wide

variety of
plains over

time?

Exposed to
a wide

variety of
hash types
over time?

Infrequent recovery (means to an end) Y Y Y Y N varies N N

Internal corp password audit Y Y N/A Y Y Y N N

Password auditing (consultants) N Y N/A Y Y Y Y N

Internal pentest (red team) Y Y N/A Y Y Y N N

External pentest N Y N/A Y Y Y Y N

Internal forensics (staff InfoSec) Y Y N Y ? Y N N

External forensics (LE) N ? ? ? ? Y Y N

Password research N ? ? ? ? measure Y ?

Competition: well-sourced, timed Y Y N/A Y N Y Y Y

Competition: well-sourced, untimed Y Y N/A Y N N Y Y

Competition, poorly-sourced, timed ? N ? ? ? Y Y Y

Competition, poorly-sourced, untimed ? N ? ? ? N Y Y

Cracking for bounty (forums, etc.) ? ? ? ? ? varies Y Y

Enthusiast activities N ? ? ? N varies Y Y

Bad guy activities N Y N N ? varies varies ?

Prerequisites and assumptions

1. You want to crack passwords:

● more consistently

● with more results sooner

● with better understanding

… and to continually improve over time

8

Prerequisites and assumptions

2. You have general password-cracking software ...

9

FOSS Free (as in beer),
closed source

Commercial

https://hashcat.net/hashcat/
http://www.openwall.com/john/
https://hashes.org/mdxfind.php
http://www.l0phtcrack.com/
http://www.insidepro.com/
https://www.passcape.com/
https://www.davegrohl.org/
https://www.passware.com/
http://hashsuite.openwall.net/
https://www.elcomsoft.com/

Prerequisites and assumptions

3. You have some hashes (an offline attack):

bba55a0d356d3af89354f6cd7c95b571

f3bbbd66a63d4bf1747940578ec3d0103530e21d

Administrator::24FCC5E8753EA7DCAD0C0724C88E0133:91D95FEFFC9963CC759FC4B338BDE1BB:::

SCRYPT:1024:1:1:MzM0NA==:LdHQwHIciz9N1HZQ9O1eOkxKCCgnW+Sv015WpZ2Su3A=

36BYJUMId/4AM

$2a$12$2mMZzXhVGss5HlGZGKTgjuacYzlOgLoqwkHdeDSS5/7232t/ZluNq

$sha1$15100$jiJDkz0E$E8C7RQAD3NetbSDz7puNAY.5Y2jr

51c4d477273a064c

_q0..6704amnbqWdjdfs

$1$57784108$grgZw95/LN9eIXxaETHv00 $apr1$08242617$skwyr2o88OWLGaSUqdMGK.

t5a8soeju4i8khkrcctu3cp4ddi1ac8i:.bsideslv.org:82205656:1

10

Prerequisites and assumptions

4. You are familiar with hashing for password “storage”:

● Not stored, but hashed (one way; resulting string is fixed length)
● Some are salted (good); others are unsalted (naive/outdated)
● Salts slow down cracking large lists, not individual hashes
● Some hashes are slow (bcrypt) – bad for the attacker
● Others are fast (unsalted MD5) – good for the attacker
● If you are saying “decrypted” or “dehashed” … No.

Good overview: https://security.stackexchange.com/questions/211#31846 (Pornin)

11

https://security.stackexchange.com/questions/211#31846

Prerequisites and assumptions

5. You know some basic password cracking attacks:

● Straight wordlist / dictionary
● Rules (“password” + “c $1” = “Password1”)
● Combinator (list (“za”, “b”, “c”) produces “bza”, “cza”, “zab” …)
● Masks (“?u?l?l?l?d?d?d?d?s” - matches “Fall2017!”)
● Hybrid dict+mask (lucky?d = lucky1, lucky2 …) or mask+dict
● Brute force (?a?a?a?a?a = all six-char ASCII passwords)

Masks and bruteforce guess in an intelligent order (Markov)

12

Prerequisites and assumptions

6. You know some basic password management
psychology

● Human memory is finite

● We compensate for this with chunking

13

Source: Stangor, Introduction to Psychology, Ch 8 (fair use)

Because chess experts can “chunk”, they strongly outperform novices
in board layout memorization tasks for valid chess games ...

Chunking

14

Source: Stangor, Introduction to Psychology, Ch 8 (fair use)

… but when presented with a random board layout, experts perform no better

Chunking

15

Experts memorize
complex board
layouts efficiently,
because they can
“chunk” the
board into sets of
familiar patterns

Source: Gobet, 2011 in re Chase and Simon 1973 (fair use)

Chunking

16

Chunking in password schemes
“My son’s name, all lower case, with his birth year at the end”

kevin1963

... is (very roughly) five “chunks” of information:

1) A specific person’s name
2) The case of the name
3) Their specific birth year
4) The length of the birth year (YY vs YYYY)
5) The method/order of appending (vs. “1963kevin”)

Cracking guided by known chunking strategies
is much less expensive than bruteforce

17

Attacking the chunks

To crack many passwords using the ‘kevin1963’ scheme:

Wordlist: Facebook names (in frequency order):

http://downloads.skullsecurity.org/passwords/facebook-firstnames-withcount.txt.bz2

Attack: Appending digits to a wordlist (hashcat, on GPU):

$./hashcat -a 6 -m 0 test.md5 -j l facebook.txt ?d?d?d?d

For all of SkullSecurity’s Facebook name wordlists (2010):
http://www.skullsecurity.org/blog/?p=887

18

http://downloads.skullsecurity.org/passwords/facebook-firstnames-withcount.txt.bz2
http://www.skullsecurity.org/blog/?p=887

Cracking constraints

Source: https://www.flickr.com/photos/tanj/3838754485/ - CC-BY-2.0

19

https://www.flickr.com/photos/tanj/3838754485/
https://creativecommons.org/licenses/by/2.0/

Cracking constraints: Math/physics
The exponential nature of bruteforce

Source: http://blog.erratasec.com/2011/06/password-cracking-mining-and-gpus.html
See also Rob’s blog post: http://blog.erratasec.com/2012/08/common-misconceptions-of-password.html

And his talk at Passwords ‘13: https://www.youtube.com/watch?v=dM0iZvR786Q
20

http://blog.erratasec.com/2011/06/password-cracking-mining-and-gpus.html

Cracking constraints: Math/physics
The exponential nature of bruteforce – crosscheck

$ python -c 'print 95**2'
9025
$ python -c 'print 95**3'
857375
$ python -c 'print 95**4'
81450625
$ python -c 'print 95**5'
7737809375
$ python -c 'print 95**6'
735091890625
$ python -c 'print 95**7'
69833729609375
$ python -c 'print 95**8'
6634204312890625
$ python -c 'print 95**9'
630249409724609375
$ python -c 'print 95**10'
59873693923837890625

21

Assume that we have no idea
what characters might be used,
(other than that they are
printable ASCII / 95 characters)

<------------------------ This is 5.9x1019

Cracking constraints: Math/physics
The exponential nature of bruteforce - crosscheck

Benchmark for MD5 (mode 0), 6x GTX 1080, no overclock

$ hashcat -b -m 0 --quiet

Hashtype: MD5

Speed.Dev.#1.....: 25434.5 MH/s (52.74ms)
Speed.Dev.#2.....: 24610.4 MH/s (54.48ms)
Speed.Dev.#3.....: 24968.4 MH/s (53.72ms)
Speed.Dev.#4.....: 24923.4 MH/s (53.82ms)
Speed.Dev.#5.....: 24015.1 MH/s (53.70ms)
Speed.Dev.#6.....: 25002.8 MH/s (53.64ms)
Speed.Dev.#*.....: 149.0 GH/s

22

Cracking constraints: Math/physics
The exponential nature of bruteforce - crosscheck

$ hashcat -b -m 0 --quiet --machine-readable
1:0:1746:4513:53.02:25294033130
2:0:1733:4513:54.12:24427650923
3:0:1771:4513:53.67:24987941094
4:0:1746:4513:53.81:24925294904
5:0:1721:4513:53.10:25257382009
6:0:1784:4513:53.47:24999576814 = 150302475476 hashes/sec

Hours to exhaust ?a at length 8
$ python -c 'print (6634204312890625/150302475476)/60/60'
12
Days to exhaust ?a at length 9
$ python -c 'print (630249409724609375/150302475476)/60/60/24'
48
Years to exhaust ?a at length 10
$ python -c 'print (59873693923837890625/150302475476)/60/60/24/365'
12

23

Cracking constraints: Math/physics

24

Cracking constraints: Math/physics

How long should your random password be?

ceil(logC (H * Y * 31556926 [sec/year]))

C = charset count
H = adversary hashrate

Y = years to crack

Source rant: https://twitter.com/jmgosney/status/714599158229786625

25

https://twitter.com/jmgosney/status/714599158229786625

Cracking constraints: Math/physics

How long should your random password be?

ceil(logC (H * Y * 31556926 [sec/year]))
(Assuming: C = alphanum (62 chars), H = 100TH/s, Y = 100 years)

... the non-Moore’s-law-aware answer is 14 characters:

IoI8Oasu93H6oN
XxCp8KekKhR1A6
vnhkx7qMNOpGHo
TKheK2Mzkw63IP

s
(and per the anrieff.net calculator, w/Moore’s Law, it would be 16 years 2 months)

26

http://www.wolframalpha.com/input/?i=ceil(log+base+62+of+(100000000000000+*+100+*+31556926))
http://anrieff.net/ucbench/moore.html

 27

Cracking constraints: Math/physics

How long should your random passphrase be?

ceil(logC (H * Y * 31556926 [sec/year]))
(Assuming: C = 17K word dictionary, H = 0.1TH/s, Y = 1 year)

= 5 words, regardless of other complexity

cain mystery ahoy discourse serpent
stares perkiness begs fleshy form

eternal belonged sane allowing disc

Adjust the parameters based on your threat model
Add trivial complexity for any sites that require it

28

http://www.wolframalpha.com/input/?i=ceil(log+base+17000+of+(100000000000000+*+.1+*+31556926))
https://gist.github.com/roycewilliams/601f066f47f3d0f3677b32339f7992f5

Cracking constraints: Math/physics

Just in case you’re also worried about time travelers
or inter-dimensional aliens:

Landauer's principle: theoretical minimum energy of one bit
flip of information

The mass-energy of the sun = 2225.2 operations (Pornin)

225 bits = 35-character (95 printable ASCII) passwords

(Hat tip: James Wu / @analogist_net)

29

https://en.wikipedia.org/wiki/Landauer's_principle
https://security.stackexchange.com/questions/6141#6149
https://news.ycombinator.com/item?id=14775148
https://twitter.com/analogist_net

Cracking constraints: The target

● Speed of the hash
● You can be lazy experimental with faster hashes
● Slow hashes = harder w/o knowledge of target

● Size of the target
● 61M SHA1 from a public leak? Try it all!
● A single WPA2? Target knowledge needed

● Your knowledge of the target
● Some good OSINT tools - but there is a limit
● Demographics and sophistication of the target

● Requirements (usually detectable)

30

Cracking constraints: Capabilities (1)

● Software availability and algorithm support

● Cracking technique awareness

● Your available attention / energy / motivation

31

Cracking constraints: Capabilities (2)

● Raw cracking-specific compute capability

● Your ability to turn target knowledge into inputs

● Quality of inputs (wordlists, rules, masks, etc.)

● Initial attack “spin-up” / prep latency (script this!)

32

33

Platform considerations

33
Source: Flickr user kentwang - CC BY-SA 2.0

https://www.flickr.com/photos/kentwang/9467537173
https://creativecommons.org/licenses/by-sa/2.0/

OS / hardware / admin hints

● Use the native OS (not a VM) if you can
● Kali’s OpenCL and Intel OpenCL are problematic
● Use the latest stable video drivers, not OS stock
● Use the john “jumbo” & latest hashcat releases …
● … but also keep betas and latest GitHub available
● … and make it easy to quickly run any of them
● For NVIDIA GPUs, use reference/Founders models

● Very hardy, built to exact NVIDIA specs
● Consider locking fan speed (80%? 100%?) based on

your thermal risk models

34

https://hashcat.net/beta/

Use the FOSS, Luke ...

● No arbitrary caps on target size
● Scriptable
● Multi-OS, multi-platform
● Cross-pollination among projects
● Opportunity to directly contribute
● stdin … and stdout

35

… but embrace the Dark Side ;)

● Ease of use
● GUI
● Canned wordlists and rules
● Often good attack-plan management
● Built-in distributed processing

● Some suites have free trials
● Some free front-ends (Hashtopussy, Hashview) have

similar features

36

¿Por que no los dos?

● Use both FOSS and commercial – whichever are the right tools for

your use cases

● It’s Free to add FOSS. And some non-free are very affordable

● Play with all of them. More exposure = more perspective

● Press your vendors for more interoperability (stdin/stdout support),

custom rules, etc.

37

Input management

Source: http://www.neogaf.com/forum/showpost.php?p=110289415&postcount=232
38

Wordlist management (1)
● Focus on human-generated strings

● Quality over quantity

● Single best public source for founds: hashes.org

● Based wholly on public leaks (AFAICT)

● Lists both found and remaining hashes, per leak

● Has an API for submission of new founds

● For slow hashes, bulk harvest from context (CewL, Maltego,

etc.)

39

https://hashes.org/

Wordlist management (2)
● All human-generated strings are fair game

● Wikipedia/Wikia (long tail of fictional words/phrases)

● Domain names and hostnames (Rapid7 Project Sonar DNS ANY)

● Usernames / email addresses / given/family names …

● Street addresses, lyrics, movie subtitles, Project Gutenberg ...

● In other words – things that people remember that you can harvest

in bulk

● These need to be normalized and deduped

40

https://xj1.fr/blog/mettre-au-clair-des-mots-de-passe-avec-wikipedia/
https://scans.io/study/sonar.fdns_v2

Wordlist management (3)
● Deduplicate by type (superset of all email addresses, etc.)

● rli and rli2 from hashcat-utils are the go-to tools

● Build a superset, but retain per-source dictionaries

● Watch RuraPenthe’s talk on wordlist grooming:

https://www.youtube.com/watch?v=IGbceBOVYI

● Some people import into databases … mixed consensus

● Probably a 301-level activity :)

● I prefer plain text files (the trade-off is more disk space)

41

https://github.com/hashcat/hashcat-utils/releases
https://www.youtube.com/watch?v=IGbceBOVYI

Wordlist conversion

● If not in UTF-8, convert to UTF-8 with iconv
● … but keep the originals

● HTML escapes? Use RuraPenthe’s rurasort

42

Baseword extraction

● Stemming - deriving original base words from plains

“Ground1234!” → “ground”

● More difficult than it looks – aspell, neural networks

● RuraPenthe’s rurasort – lots of different options

43

https://github.com/rurapenthe/rurasort

Mask management
● Grab other people’s masks, like KoreLogic’s

● Make your own from your previous and current cracks - use PACK’s

statsgen and maskgen

● Clients who don’t let you keep plains might let you keep stats

● Keep masks sorted by frequency

● If you get a new list of masks, remove ones that are already

exhausted.

● Hashcat’s .log files note when they are exhausted (and you can

harvest / diff the list)

● Status code definitions are in include/types.h, STATUS_*

44

https://blog.korelogic.com/blog/2014/04/04/pathwell_topologies
https://thesprawl.org/projects/pack/
https://thesprawl.org/projects/pack/#statsgen
https://thesprawl.org/projects/pack/#maskgen
https://github.com/hashcat/hashcat/blob/master/include/types.h

Rules management
● Grabbing rules from others

● Watch: hashcat forums, bartavelle, EvilMog

● Not all rules are compatible with all suites – see hashcat wiki

● Some rules are not GPU-or CPU-ready and will be rejected

● Strip CPU or GPU rules with hashcat-utils’ cleanup-rules

● Making your own rules

● Generate from a given dict and plains list, using bartavelle’s

rulesfinder (GitHub)

● Deduplicating rules is tricky

● space vs non-space, and rules that cancel each other out

● 0xbsec’s duprule looks promising – still in development 45

https://github.com/bartavelle
https://github.com/evilmog/rules
https://hashcat.net/wiki/doku.php?id=rule_based_attack
https://hashcat.net/wiki/doku.php?id=hashcat_utils#cleanup-rules
https://github.com/bartavelle/rulesfinder
https://github.com/0xbsec/duprule

46

Attack methods

46

Cheat

47

https://twitter.com/mainframed767/status/883343407208218624

Cheat ...

48

● Useful only for unsalted hashes
● Try Google AND Bing, etc (different results sometimes)
● Some specific sites (no specific recommendation - YMMV)

hashcrack.com hash-killer.com/hashdb
md5center.com md5-database.xyz

md5decryption.com md5decrypt.net md5hashing.net
md5.my-addr.com www.nitrxgen.net/md5db

... etc.

● Use sites’ own search features – may not be fully spidered
● Sites come and go – scout for new ones

● Use a web search for a semi-common hash

… but cheat responsibly

● Consider sensitivity of hashes before submitting – they are
stored, analyzed, and being cracking (that is what the sites
are really for)

● Google/Bing searches may be less likely to expose
hashes to third parties (but weigh sensitivity anyway!)

● Third-party pentesters/auditors – think hard

49

Custom Markov
● Stock Markov sets are often derived from RockYou (100%!)

● This is fine for first passes, but your target may be different

● Use your cracks and hcstatgen to build a custom Markov set:

$./hcstatgen.bin out.hcstat < infile

… and then use it for bruteforce/mask-based attacks

Example: custom Markov based on LinkedIn founds
automatically hits strings with “link” “LI” “linked”, etc. more often
and earlier in the attack

50

https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstatgen

PRINCE (1)
● PRINCE mode is supported by John natively, and by hashcat as

a standalone binary (which you can pipe directly to hashcat)

In essence, it’s a smart combinator attack that will run forever,
combining two words, three words, etc. from a given wordlist

● Using CPU only and only RockYou as input, early PRINCE
testing cracked 72% of LinkedIn in 24 hours – completely
automated.

● Introductory post from the hashcat forums

● Technical details are in slides from atom’s 2014 talk

51

https://github.com/hashcat/princeprocessor
https://hashcat.net/forum/thread-3914.html
https://hashcat.net/events/p14-trondheim/prince-attack.pdf

PRINCE (2)
● I personally credit PRINCE for a lot of what I have learned since it

was released … because it showed me what I didn’t know yet.

● I run PRINCE in parallel with other runs – on CPU, on a separate
box, etc.

● I also run it as an ‘attack of last resort’ to fall back to when other
attacks finish and I don’t have something else queued up.

● Use PRINCE. Seriously.

52

Broad attack guidance
● Don’t be afraid to feed things into other things

● In epixoip’s Circle City Con class, he described “PRINCEPTION”
- feeding PRINCE into itself!

● Stdin/stdout and named pipes are key for this exploration

● Use the raw numbers to measure performance – was it worth it?

● Be ready with bash/Python/perl/PowerShell to try things that don’t
have a tool yet (that you know of)

● Back up your results(lists, notes, founds, scripts) to reliable
media.

53

Accurate speed estimation

$ echo -n bsideslv17 | md5sum | awk '{print $1}' >bslv.hash

$ cat bslv.hash
A3c67ba47cfb67c42840acc21a77211f

$ hashcat --speed-only -b -m 0 --quiet --machine-readable
1:0:-1:-1:53.31:114469177

$ hashcat --speed-only -m 0 -a 3 bslv.hash \
 ?a?a?a?a?a?a?a?a --quiet --machine-readable
1:20133346

Actual speed for this attack is ~17.6% of benchmark speed
Use actual speed to create your attack plans

54

55

● “Wall-clock” time efficiency is relative

● Crack position (number of guesses) is absolute

Measuring attack efficiency

55

56

- [Outfile Formats] -

 # | Format
 ===+========
 1 | hash[:salt]
 2 | plain
 3 | hash[:salt]:plain
 4 | hex_plain
 5 | hash[:salt]:hex_plain
 6 | plain:hex_plain
 7 | hash[:salt]:plain:hex_plain
 8 | crackpos
 9 | hash[:salt]:crack_pos
 10 | plain:crack_pos
 11 | hash[:salt]:plain:crack_pos
 12 | hex_plain:crack_pos
 13 | hash[:salt]:hex_plain:crack_pos
 14 | plain:hex_plain:crack_pos
 15 | hash[:salt]:plain:hex_plain:crack_pos

Measuring attack efficiency

56

57

$ hashcat -a 3 -m 0 testmd5.hash ?l?l?l?l?a?a?a \
 --outfile test1.out --outfile-format 11 \
 --quiet --potfile-path=/dev/null

$ hashcat -a 3 -m 0 testmd5.hash ?l?l?l?l?d?d?d \
 --outfile test2.out --outfile-format 11 \
 --quiet --potfile-path=/dev/null

$ cat test1.out test2.out
7e7da6a03ac3b80bad3f338fffa621d5:hash234:12378814668
7e7da6a03ac3b80bad3f338fffa621d5:hash234:137798556

The second attack is 100 times faster than the first -
regardless of the underlying hardware speed

Measuring attack efficiency

57

58

Measuring attack efficiency

58
Source: Matt Weir (lakiw) PRINCE analysis

Once you have the
numbers, plot them
(gnuplot, Excel, etc.)

http://reusablesec.blogspot.com/2014/12/tool-deep-dive-prince.html

59

● The PACK toolkit is an essential set of tools
● Build statistics on letter frequency and mix types
● Build lists of masks based on time constraints
● Other fantastic features – definitely a minimum

Analyzing cracks and founds

59

60

● If your plains are in one character encoding and your targets
are in another, this won’t work

● Recommendation: convert everything you get to UTF-8
● If your suite doesn’t include encoding conversion tools, use
iconv to convert to the target encoding

● Looks like John has good support (not checked)
● Hashcat recently added encoding-from / encoding-to flags

● Hashcat can do multibyte bruteforce with a workaround
(RuraPenthe’s)- works, but tricky; his good writeup here

● Full example using PACK and German characters:
https://security.stackexchange.com/a/154958

Working with non-ASCII

60

http://blog.bitcrack.net/2013/09/cracking-hashes-with-other-language.html

Universal attack-plan principles
● With inputs, quality and frequency order matter more than quantity
● Start simple – crack the easy stuff quickly
● If you can cap attack runtime, use it (diminishing Markov returns)
● While that is running, analyze plains for untapped patterns
● Arrange attacks in order by efficiency for the time allotted
● Record all attacks, results, and performance (science!)
● Script these and repeat the good attacks on all new founds
● Avoid duplicated masks/wordlists - when it makes sense
● Append a fallback attack to each attack plan

61

Understandable naive approaches

“Where can I get more wordlists? I have 120GB so far.”

62

Understandable naive approaches

“I’m trying ?a?a?a?a?a?a?a?a?a?a?a?a?a, what next?”

63

Understandable naive approaches

3ce8b30b8e25ea5d9a83d4a073d6ddf8

“Ah, this must be MD5 - because it’s 32-character hex.”

64

Understandable naive approaches

“I’m trying to get hashcat to work in Kali, and ...”

65

Learn from history

Great presentation on the history of password security by
Solar Designer (@solardiz) and Simon Marechal
(@bartavelle):

http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/

66

http://www.openwall.com/presentations/Passwords12-The-Future-Of-Hashing/

Other bootstrapping resources

Hashcat:
wiki, FAQ, forums, IRC (#hashcat on Freenode), GitHub

John:
john-users mailing list, docs, GitHub for jumbo version

General:
Hashkiller.co.uk and InsidePro forums

Passwords & Ground1234! conference talks on YouTube
PasswordResearch.com (Bruce K. Marshall)

67

https://hashcat.net/wiki/
https://hashcat.net/wiki/doku.php?id=frequently_asked_questions
https://hashcat.net/forum/
https://webchat.freenode.net/
https://github.com/hashcat/hashcat
http://www.openwall.com/lists/john-users/
http://www.openwall.com/john/doc/
https://github.com/magnumripper/JohnTheRipper
http://www.passwordresearch.com/

Cultural hints
● Like many geek areas, password crackers can be rough

on the noobs sometimes
● Information sharing beyond a certain point is limited
● Like BSidesLV, related projects are usually “do-ocracies”
● Show up, roll up your sleeves, don’t ask the same

question twice, and if someone sends you a link in answer
to your question, you’d better read it.

● The shared common interest makes for a great community

68

In other words ...

Do not trace the footsteps of the wise;
seek what they sought.

- Bashō (poet, paraphrasing Kūkai (!))

Imitate the intent, not the brush strokes.

- Kūkai (on calligraphy)

69

https://japanese.stackexchange.com/questions/28640#comment60004_28645

Thanks
 AlecMuffett curlyboi grempe Matlink sc00bz
 Apingis d22 hashcate ;) mckusick sedition
 atom d3ad0ne hydraze Minga simestd
 atoponce DaKahuna iphelix mubix solardiz
 bartavelle DidierStevens jfoug neheb soxrok2212
 bill_e_ghote digininja Jumpforce NETMUX stanev
 Bitweasil doc2n ken nitrxgen stratomarco
 blandyuk DoZ10 kholia _NSAKEY Szul
 bmenrigh dropdeadfu kmalvoni nuartvision T0XlC
 brutemorse empty_knapsack Kryczek NullMode thorsheim
 cantcomputer epixoip kwzh philsmd undeath
 Chick3nman ErrataRob lakiw PwdRsch unix-ninja
 claudioandré EvilMog lars- r4d1x veorq
 coolbry95 Fist0urs lyosha richrumble waffle
 CormacHerley floyd m33x Rjmendez winxp5421
 countuponsec frank-dittrich m3g9tr0n Rolf Xanadrel
 cowboym g0tmilk m8urnett rurapenthe xmisery
 cperciva GiftsUngiven magnum ryan-c ZerBea
 CrackTheHash gm4tr1x mangix s3in!c zorinaq

Contact: royce@techsolvency.com | @TychoTithonus

Slides, errata, references:
www.techsolvency.com/talks 70

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

